ข้อใดต่อไปนี้ เป็น มอน อ เม อ ร์ ของ พี วี ซี ยาง SBR และ เส้นใย ฝ้าย ตามลำดับ

ยางและพอลิเมอร์

ยาง

    ยาง คือวัสดุพอลิเมอร์ที่ประกอบด้วยไฮโดรเจนและคาร์บอน ยางเป็นวัสดุที่มีความยืดหยุ่นสูง ยางที่มีต้นกำเนิดจากธรรมชาติจะมาจาของเหลวของพืชบางชนิด ซึ่งมีลักษณะเป็นของเหลวสีขาว คล้ายน้ำนม มีสมบัติเป็นคอลลอยด์ อนุภาคเล็ก มีตัวกลางเป็นน้ำ ยางในสภาพของเหลวเรียกว่าน้ำยาง ยางที่เกิดจากพืชนี้เรียกว่ายางธรรมชาติ ในขณะเดียวกันมนุษย์สามารถสร้างยางสังเคราะห์ได้จากปิโตรเลียม

การผลิตยางธรรมชาติ

    แหล่งผลิตยางธรรมชาติที่ใหญ่ที่สุดในโลกคือ แถบเอเชียตะวันออกเฉียงใต้คิดเป็นร้อยละ 90 ของแหล่งผลิตทั้งหมด ส่วนที่เหลือมาจากแอฟริกากลาง[1] ซึ่งพันธุ์ยางที่ผลิตในเอเชียตะวันออกเฉียงใต้ คือฮีเวีย บราซิลเลียนซิส (Hevea brasiliensis) น้ำยางที่ได้จากต้นยางมีลักษณะเป็นเม็ดยางเล็ก ๆ กระจายอยู่ในน้ำ (emulsion) มีปริมาณของแข็งประมาณร้อยละ 30-40 การใส่กรดอะซิติกเจือจางลงในน้ำยาง ทำให้น้ำยางจับตัวเป็นก้อน เกิดการแยกชั้นระหว่างเนื้อยางและน้ำ ส่วนน้ำที่ปนอยู่ในยางจะถูกกำจัดออกไปโดยการรีดด้วยลูกกลิ้ง 2 ลูกกลิ้ง วิธีการหลัก ๆ ที่จะทำให้ยางแห้งสนิทมี 2 วิธีคือ การรมควันยาง และการทำยางเครพ แต่เนื่องจากยางผลิตได้มาจากเกษตรกรจากแหล่งที่แตกต่างกัน ทำให้ต้องมีการแบ่งชั้นของยางตามความบริสุทธิ์ของยางนั้น ๆ

รูปแบบของยางธรรมชาติ

ยางธรรมชาติสามารถแบ่งออกเป็นหลายประเภทตามลักษณะรูปแบบของยางดิบ ได้แก่

  • น้ำยาง
    • น้ำยางสด
    • น้ำยางข้น
  • ยางแผ่นผึ่งแห้ง : ยางที่ได้จากการนำน้ำยางมาจับตัวเป็นแผ่นโดยสารเคมีที่ใช้จะต้องตามเกณฑ์ที่กำหนด ส่วนการทำให้แห้งอาจใช้วิธีการผึ่งลมในที่ร่ม หรือ อบในโรงอบก็ได้แต่ต้องปราศจากควัน
  • ยางแผ่นรมควัน
  • ยางเครพ
  • ยางแท่ง[2] : ก่อนปี 2508 ยางธรรมชาติที่ผลิตขึ้นมา ส่วนใหญ่จะผลิตในรูปของยางแผ่นรมควัน ยางเครพ หรือน้ำยางข้น ซึ่งยางธรรมชาติเหล่านี้จะไม่มีการระบุมาตรฐานการจัดชั้นยางที่ชัดเจน ตามปกติจะใช้สายตาในการพิจารณาตัดสินชั้นยาง ต่อมาในปี 2508 สถาบันวิจัยยางมาเลเซีย (Rubber Research Institute of Malaysia) ได้มีการผลิตยางแท่งขึ้นเป็นแห่งแรก เพื่อเป็นการปรับปรุงและพัฒนาคุณภาพของยางธรรมชาติให้ได้มาตรฐาน เหมาะสมกับการใช้งาน จนทำให้ยางแท่งเป็นยางธรรมชาติชนิดแรกที่ผลิตมาโดยมีการควบคุมคุณภาพให้ได้มาตรฐาน ตลอดจนมีการระบุคุณภาพของยางดิบที่ผลิตได้แน่นอน
  • ยางแท่งความหนืดคงที่[2] : เป็นยางที่ผลิตขึ้นเพื่อใช้ในอุตสาหกรรมทำผลิตภัณฑ์ที่ต้องการควบคุมความหนืดของยางที่ใช้ในการแปรรูป เช่น อุตสาหกรรมยางท่อ, อุตสาหกรรมทำกาว
  • ยางสกิม[3] : ยางสกิมเป็นยางธรรมชาติที่ได้จากการจับตัวน้ำยางสกิม (skim latex) ด้วยกรดแล้วนำยางที่ได้ไปทำการรีดแผ่นและทำให้แห้ง โดยน้ำยางสกิมเป็นน้ำส่วนที่เหลือจากการทำน้ำยางข้นด้วยการนำน้ำยางสดมาทำการเซนตริฟิวส์ แยกอนุภาคเม็ดยางออกจากน้ำ ซึ่งอนุภาคเม็ดยางเบากว่าน้ำ ส่วนใหญ่จึงแยกตัวออกไปเป็นน้ำยางข้น น้ำยางข้นที่ได้มีปริมาณเนื้อยางอยู่ร้อยละ 60-63 ซึ่งน้ำยางสกิมคือส่วนที่เหลือจากการเซนตริฟิวส์แยกเนื้อยางส่วนใหญ่ออกไปแล้ว ก็ยังมีส่วนของเนื้อยางออกมาด้วย ซึ่งเป็นเนื้อยางที่มีขนาดอนุภาคเล็ก ๆ มีปริมาณเนื้อยางอยู่ร้อยละ 3-6

โครงสร้างหลักที่มีผลกระทบต่อสมบัติของยางธรรมชาติ

    ยางธรรมชาติมีชื่อทางเคมีคือ ซิส-1,4-พอลิไอโซพรีน (cis-1,4-polyisorene) เป็นโมเลกุลที่ประกอบด้วยคาร์บอนและไฮโดรเจนล้วน ทำให้มีสมบัติไม่ทนต่อน้ำมัน แต่เป็นฉนวนไฟฟ้าได้ดี ใน 1 โมเลกุลจะประกอบด้วยหน่วยของไอโซพรีน (C5H8) มาต่อกันเป็นสายโซ่ยาวแบบเส้นตรงใน 1 หน่วยไอโซพรีนจะมีพันธะคู่และหมู่อัลฟาเมทธิลีนที่ว่องไวต่อการเกิดปฏิกิริยา ทำให้สามารถวัลคาไนซ์ได้ด้วยกำมะถัน และทำให้ยางทำปฏิกิริยาได้ง่ายด้วยออกซิเจนและโอโซน ทำให้ยางเกิดการเสื่อมสภาพได้ง่ายเช่นเดียวกัน ดังนั้นการออกสูตรยางจำเป็นจะต้องมีแอนตี้ออกซิแดนท์และแอนตี้โอโซแนนท์ร่วมด้วย[3] ยางธรรมชาติมีสายโซ่ที่เคลื่อนไหวหักงอไปมาได้ง่าย ทำให้ยางธรรมชาติคงสภาพยืดหยุ่นได้ดี มีอุณหภูมิของการเปลี่ยนสถานะคล้ายแก้ว ประมาณ -72 °C สามารถใช้งานได้ที่อุณหภูมิต่ำมาก สำหรับความสม่ำเสมอในโครงสร้างโมเลกุล ทำให้ยางธรรมชาติสามารถตกผลึกได้เมื่อยืด การเกิดผลึกเนื่องจากการยืดตัวยังทำให้ยางคงรูปมีสมบัติเชิงกลดีขึ้น นั่นคือ ยางจะมีความทนทานต่อแรงดึง ความทนทานต่อการฉีกขาด และความต้านทานต่อการขัดถูสูงขึ้น ยางธรรมชาติมีน้ำหนักโมเลกุลเฉลี่ยสูง อยู่ในช่วง 200,000 ถึง 400,000 [4]และมีการกระจายตัวของน้ำหนักโมเลกุลกว้างมาก ทำให้ยางแข็งเกินไปที่จะนำไปแปรรูปโดยตรง จะต้องมีการบดยาง ก่อนที่จะนำไปใช้ในกระบวนการผลิต ซึ่งเครื่องมือที่ใช้ในการบดยางโดยทั่วไปจะใช้เครื่องบดยางสองลูกกลิ้ง

ยางธรรมชาติประเภทอื่น ๆ (ปรับสภาพโครงสร้าง

  • ยางฮีเวียพลัส เอ็มจี[2] (Heveaplus MG) : ยางธรรมชาติที่มีการปรับสภาพโครงสร้างให้มีโครงสร้างโมเลกุลของเทอร์โมพลาสติกโดยโครงสร้างของยางเป็นสายโซ่หลัก (Backbone chain) และโครงสร้างของพอลิเมทธิลเมทาไครเลท (Polymethyl methacrylate) เป็นสายโซ่ที่มาต่อกับยางธรรมชาติ (Graft chain) เรียกว่า กราฟโคพอลิเมอร์
  • ยางธรรมชาติอิพอกไซด์[2] (ENR) : ยางธรรมชาติอิพอกไซด์ เป็นยางที่นำยางธรรมชาติมาปรับโครงสร้างโดยใช้สารเคมีจำพวกกรดเพอร์ออกซี่ (peroxy acid) ซึ่งยางจะมีลักษณะเป็นสีน้ำตาลเข้มกว่ายางธรรมชาติปกติ ซึ่งสามารถเตรียมได้ทั้งชนิดน้ำยางและยางแห้ง โดยมีการผลิตขึ้นเพื่อปรับปรุงสมบัติบางประการของยางธรรมชาติให้ดีขึ้น เช่น ทำให้ยางมีความเป็นขั้วมากขึ้น สามารถทนต่อน้ำมันและตัวทำละลายที่ไม่มีขั้วได้ดีขึ้น สามารถทนต่อโอโซน และการซึมผ่านของอากาศได้ดี เพราะพันธะคู่ในโครงสร้างยางธรรมชาติมีปริมาณน้อยลง อย่างไรก็ตามก็จะมีสมบัติบางประการที่ด้อยกว่ายางธรรมชาติ เช่น มีความยืดหยุ่นต่ำลง และหากนำไปวัลคาไนซ์ด้วยกำมะถันยางจะไม่ทนต่อความร้อน ยาง ENR มักใช้ในอุตสาหกรรมกาว หรือสารยึดติด รองเท้า สี และยางรถยนต์ เป็นต้น
  • ยางผง[2] (Powder Rubber) : ยางผง เป็นยางที่ผลิตออกมาในลักษณะที่เป็นเม็ด เพื่อให้สะดวกในการใช้งานกล่าวคือสามารถใช้งานในลักษณะการผลิตแบบต่อเนื่องได้และสามารถใช้ได้ทันทีโดยไม่ต้องผ่านการบดหรือตัดยาง
  • ยางธรรมชาติสกัดโปรตีน[2] (DPNR) : ยางธรรมชาติสกัดโปรตีนเป็นยางที่มีการดัดแปลงสภาพของยาง เพื่อให้มีปริมาณโปรตีนในยางต่ำซึ่งจะเป็นการลดปริมาณไนโตรเจนและปริมาณเถ้าในยาง เนื่องจากการที่ยางมีโปรตีนในยาง (ร้อยละ 1) ทำให้ยางเกิดการวัลคาไนซ์เร็ว สมบัติบางประการของผลิตภัณฑ์ไม่ดี ไม่สามารถนำมาใช้งานในด้านวิศวกรรมได้ เนื่องจากสมบัติความทนทานต่อแรงกดหรือแรงกระแทกต่ำ และอาจมีการเกิดอาการแพ้โปรตีนในผลิตภัณฑ์ที่มีการสัมผัสโดยตรง เช่น ถุงมือ ทำให้มีความจำเป็นต้องลดปริมาณโปรตีนโดยการเตรียมน้ำยางที่มีโปรตีนต่ำก่อนนำไปทำผลิตภัณฑ์ หรือ ล้างน้ำหลาย ๆ ครั้ง สำหรับผลิตภัณฑ์ที่แยกโปรตีนด้วยการละลายน้ำได้
  • ยางไซไคลซ์[2] (Cyclised Rubber) : ยางที่ปรับสภาพโครงสร้างโมเลกุลของยาง โดยให้โมเลกุลของยางเกิดการเชื่อมโยงกันเองจนเป็นวง ทำให้มีสัดส่วนของพันธะที่ไม่อิ่มตัวลดลง ทำให้สมบัติยางเปลี่ยนไปและมีความแข็งแรงขึ้น
  • ยางเอสพี[2] (SP Rubber) : ยางเอสพีหมายถึงยางที่มีส่วนผสมของยางวัลคาไนซ์ เช่น ยางเอสพี 20 คือ ยางที่มีส่วนผสมของยางที่วัลคาไนซ์อยู่ 20 ส่วนในยาง 100 ส่วน เป็นต้น

การผสมยางธรรมชาติกับพอลิเมอร์ชนิดอื่น

ยางธรรมชาติเป็นยางที่มีสมบัติเด่นด้านควาเหนียวติดกันที่ดี, สมบัติด้านการขึ้นรูปที่ดี, ความร้อนสะสมในขณะการใช้งานต่ำ เป็นต้น แต่ก็มีสมบัติบางประการที่เป็นข้อด้อย ดังนั้นในการแก้ไขข้อด้อยนั้น สามารถทำได้โดยการเลือกเอาสมบัติที่ดีจากยางสังเคราะห์ชนิดอื่นมาทดแทน เช่น สมบัติด้านความทนทานต่อการขัดถูของยางบิวตาไดอีน (BR), สมบัติความทนทานต่อน้ำมันของยางไนไตรล์ (NBR), สมบัติความทนทานต่อความร้อนและโอโซนของยาง EPDM เป็นต้น โดยการผสมยางธรรมชาติกับยางสังเคราะห์เหล่านี้เข้าด้วยกัน แต่การที่จะผสมให้เข้ากันได้นั้นยางสังเคราะห์ชนิดนั้น ๆ ต้องไม่มีความเป็นขั้วเหมือนกับยางธรรมชาติ จึงจะทำให้ยางผสมรวมเข้ากันเป็นเฟสเดียวกันได้ดีขึ้น เช่น ยาง BR, SBR, EPDM และ NBR (เกรดที่มีอะคริโลไนไตรล์ต่ำ ๆ) ซึ่งปัจจัยที่มีผลโดยตรงต่อสมบัติของยางผสมที่ได้นั้น มีดังนี้ [4]

  • ความหนืดของยาง ยางธรรมชาติก่อนที่จะทำการผสมต้องทำการบดเพื่อลดความหนืดในตอนเริ่มต้นการผสมให้เท่ากับยางสังเคราะห์หรือใกล้เคียงซึ่งจะทำให้ยางทั้งสองผสมเข้ากันได้ดีขึ้น
  • ระบบการวัลคาไนซ์ของยาง ระบบที่ใช้ในการวัลคาไนซ์ต้องมีความเหมือนหรือแตกต่างกันไม่มากนัก เพื่อป้องกันการแยกเฟสของยางผสมขณะที่ทำการผสมยาง
  • ความเป็นขั้วของยาง ในกรณีที่ทำการผสมยางที่มีความเป็นขั้วแตกต่างกันมาก ควรพิจารณาถึงความสามารถในการกระจายตัวของสารเคมีในยางแต่ละชนิด โดยเฉพาะสารตัวเร่งและสารตัวเติม เพราะสารเหล่านี้มีแนวโน้มที่จะกระจายตัวได้ดีในยางที่มีความเป็นขั้ว ซึ่งอาจส่งผลให้ยางผสมมีสมบัติต่ำลงจากที่ควรจะเป็น หากการกระจายตัวของสารเคมีไม่ดีเท่าที่ควร

พอลิเมอร์

พอลิเมอร์มีทั้งที่เกิดเองในธรรมชาติ (Natural polymer) และพอลิเมอร์สังเคราะห์ (Synthetic polymer) ตัวอย่างของ โพลิเมอร์ธรรมชาติ ได้แก่แป้ง เซลลูโลส โปรตีน กรดนิวคลีอิก และยางธรรมชาติ ส่วนพอลิเมอร์สังเคราะห์ เช่น พลาสติก เส้นใย โฟม และกาว พอลิเมอร์ทั้งสองชนิดนี้เข้ามามีบทบาทมากในชีวิตประจำวัน เราต้องใช้ประโยชน์จากพอลิเมอร์ และพอลิเมอร์แต่ละชนิดมีสมบัติต่างกัน จึงนำหน้าที่หรือนำไปใช้งานที่ต่างกันได้

พอลิเมอร์ที่เป็นที่นิยมใช้มากที่สุดคือพลาสติก ซึ่งเป็นคำที่ใช้อ้างถึงกลุ่มของวัสดุธรรมชาติและสังเคราะห์กลุ่มใหญ่ที่มีคุณสมบัติและการใช้งานต่างกัน พอลิเมอร์ธรรมชาติเช่นชแล็กและอำพันที่ใช้มาเป็นเวลากว่าศตวรรษ พอลิเมอร์ชีวภาพ เช่น โปรตีนและกรดนิวคลีอิกที่มีบทบาทสำคัญในกระบวนการทางชีวภาพ พอลิเมอร์ธรรมชาติอื่นๆ เช่นเซลลูโลสที่เป็นองค์ประกอบหลักของกระดาษและไม้ พอลิเมอร์สังเคราะห์ที่เป็นที่รู้จักกันดี ได้แก่บาเกไลต์, นีโอพรีน, ไนลอน, พีวีซี, พอลิสไตรีน, พอลิอคริโลไนไตรล์ และพีวีบี การศึกษาเกี่ยวกับพอลิเมอร์ได้แก่ เคมีพอลิเมอร์, ฟิสิกส์พอลิเมอร์และวิทยาศาสตร์พอลิเมอร์

พอลิเมอร์สังเคราะห์ในปัจจุบันมีการประยุกต์ใช้ในอุตสาหกรรมเกือบทุกชนิด พอลิเมอร์มีการใช้ในการยึดเกาะและการหล่อลื่นอย่างกว้างขวาง เช่นเดียวกับการใช้เป็นโครงสร้างตั้งแต่ของเด็กเล่นจนถึงยานอวกาศ มีการใช้เป็นยาทางชีวภาพในฐานะเป็นตัวขนส่งยาในสิ่งมีชีวิต พอลิเมอร์เช่น พอลิ เมทิล เมทาคริเลต ที่ใช้ในกระบวนการโฟโตเรซิสในอุตสาหกรรมกึ่งตัวนำ และสารไดอิเล็กทริกโปแทสเซียมต่ำสำหรับใช้ในคอมพิวเตอร์สมรรถนะสูง ปัจจุบันยังมีการพัฒนาพอลิเมอร์ที่ยืดหยุ่นได้สำหรับอิเล็กทรอนิกส์

การเรียกชื่อพอลิเมอร์แบบมาตรฐาน

    มีการเรียกชื่อพอลิเมอร์หลายวิธี พอลิเมอร์ที่ใช้ทั่วไปส่วนใหญ่ใช้ชื่อสามัญที่เคยใช้ในอดีตมากกว่าชื่อที่ตั้งตามแบบมาตรฐาน ทั้งสมาคมเคมีอเมริกันและไอยูแพกได้กำหนดการตั้งชื่อแบบมาตรฐานซึ่งมีความคล้ายคลึงกันแต่ไม่เหมือนกันทั้งหมด ชื่อที่เป็นมาตรฐานทั้งสองระบบเป็นชื่อที่แสดงถึงชนิดของหน่วยย่อยที่ประกอบเป็นพอลิเมอร์มากกว่าจะบอกถึงธรรมชาติของหน่วยที่ซ้ำๆกันในสาย ตัวอย่างเช่น พอลิเมอร์ที่สังเคราะห์จากเอทิลีนเรียกว่าพอลิเอทิลีน ยังคงลงท้ายด้วย –อีน แม้ว่าพันธะคู่จะหายไประหว่างกระบวนการเกิดพอลิเมอร์

สูตรโครงสร้างของพอลิเมอร์

พอลิเมอร์ที่พบไม่ว่าจากในธรรมชาติ และที่สังเคราะห์ขึ้น มีโครงสร้างได้หลายรูปแบบ ทั้งนี้ขึ้นกับการเข้าเกาะของมอนอเมอร์ จึงทำให้พอลิเมอร์มีโครงสร้างอยู่ 3 รูปแบบด้วยกัน คือ

1.พอลิเมอร์สายตรง (Linear polymer) พอลิเมอร์ชนิดนี้จะเป็นโซ่ตรงยาว ถ้าให้ A และ B แทนมอนอเมอร์ โครงสร้างอย่างง่ายของโฮโมพอลิเมอร์จะเป็นดังนี้

A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A linear homopolymer

ส่วนโคพอลิเมอร์มีรูปแบบดังนี้

1.A-B-A-B-A-B-A-B-A-B Alternating copolymer (เป็นพอลิเมอร์ ที่มีมอนอเมอร์ A และ B เรียงสลับกันเป็นช่วง หน่วยต่อหน่วย)

2.A-A-B-B-B-B-A-A-A-A Block copolymer (เป็นกลุ่มของมอนอเมอร์ A และ B ที่เรียงสลับกันเป็นกลุ่ม)

3.A-A-A-B-A-B-A-A-B-B Random copolymer (เป็นมอนอเมอร์ A และ B เรียงสลับกันอย่างอิสระ)

2.พอลิเมอร์กิ่งสาขา (graft polymer) พอลิเมอร์ชนิดนี้จะมีส่วนประกอบสองส่วน คือ ส่วนที่เป็นโซ่หลัก และส่วนที่เป็นโซ่กิ่ง โดยโซ่หลักจะต้องประกอบด้วยมอนอเมอร์ชนิดเดียวเท่านั้น ส่วนมอนอเมอร์อีกชนิด จะเป็นโซ่กิ่ง

3.พอลิเมอร์ร่างแห (Cross-link polymer) เป็นพอลิเมอร์ที่เป็นร่างแหมีสายหลายสายเชื่อมต่อกัน ซึ่งเป็นได้ทั้งโฮโมพอลิเมอร์และโคพอลิเมอร์

พอลิเมอร์สังเคราะห์

การสังเคราะห์พอลิเมอร์เป็นกระบวนการของการรวมโมเลกุลขนาดเล็กๆที่เป็นหน่วยย่อยเข้าด้วยกันด้วยพันธะโควาเลนต์ ในระหว่างกระบวนการเกิดพอลิเมอร์ หมู่ทางเคมีบางตัวจะหลุดออกจากหน่วยย่อย หน่วยย่อยในพอลิเมอร์จะเป็นหน่วยซ้ำๆกัน

  • การสังเคราะห์ในห้องแลบ วิธีการในห้องแลบแบ่งได้เป็นสองกลุ่มคือการสังเคราะห์แบบควบแน่นและการสังเคราะห์แบบเติม อย่างไรก็ตาม วิธีการทีใหม่กว่าเช่นการสังเคราะห์แบบของเหลว ไม่สามารถจัดเข้าในกลุ่มใดได้ ปฏิกิริยาการสังเคราะห์พอลิเมอร์อาจเกิดขึ้นโดยมีหรือไม่มีตัวเร่งก็ได้ ในปัจจุบันมีการศึกษาทางด้านการสังเคราะห์พอลิเมอร์ธรรมชาติ เช่นโปรตีนในห้องแลบ
  • การสังเคราะห์ทางชีวภาพ พอลิเมอร์ธรรมชาติมีสามกลุ่มคือ พอลิแซคคาไรด์ พอลิเพปไทด์ และพอลินิวคลีโอไทด์ ในเซลล์ พอลิเมอร์เหล่านี้ถูกสังเคราะห์ด้วยเอนไซม์ เช่นการสร้างดีเอ็นเอด้วย เอนไซม์ดีเอ็นเอ พอลิเมอเรส การสังเคราะห์โปรตีนเกี่ยวข้องกับการใช้เอนไซม์ที่ซับซ้อนและเกี่ยวข้องกับการถอดรหัสทางพันธุกรรมในดีเอ็นเอ แล้วจึงถ่ายทอดรหัสจากดีเอ็นเอเป็นข้อมูลของลำดับกรดอะมิโน โปรตีนอาจถูกดัดแปลงหลังจากการแปลรหัสเพื่อให้มีโครงสร้างเหมาะสมกับการทำงาน
  • การดัดแปลงพอลิเมอร์ธรรมชาติ พอลิเมอร์ที่มีความสำคัญในทางการค้าหลายชนิดสังเคราะห์จากการดัดแปลงพอลิเมอร์ธรรมชาติทางเคมี ตัวอย่างเช่นปฏิกิริยาระหว่างกรดไนตริกกับเซลลูโลส เกิดเป็นไนโตรเซลลูโลส และการทำให้ยางธรรมชาติแข็งตัวโดยการเติมกำมะถัน

รูปแบบการใช้งานของพอลิเมอร์

พอลิเมอร์ที่เรามีการใช้งานในชีวิตประจำวันนั้น สามารถแบ่งออกตามลักษณะทางกายภาพได้ออกมากว้าง ๆ ได้ 4 แบบ ก็คือ

  1. เส้นใย เป็นพอลิเมอร์กลุ่มที่แข็งแรงที่สุด เนื่องจากพื้นที่หน้าตัดของเส้นใยนั้นมีขนาดที่เล็กมาก ตัวพอลิเมอร์เองจึงจำเป็นต้องรับแรงในแนวแกนเส้นใยให้ได้สูงสุด เส้นใยจึงมีลักษณะทางกายภาพที่ดูเบาบาง แต่มีความแข็งแรงสูง
  2. พลาสติก มีความแข็งแรงรองจากเส้นใย แม้ว่าการใช้งานพลาสติกนั้น จะมีมิติความกว้าง ยาว สูง มากกว่าเส้นใยหลายเท่า ทำให้ดูเหมือนว่าแข็งแรงกว่าเส้นใย แต่ถ้าลองนำพลาสติกไปฉีดให้มีความบางเท่าเส้นใย จะพบว่ามันแข็งแรงน้อยกว่ามาก
  3. ยาง มีจุดเด่นคือความยืดหยุ่นสูง เราจึงไม่เปรียบเทียบเรื่องความแข็งแรง แต่มักจะคำนึงถึงค่าเปอร์เซ็นต์การยืดตัวก่อนขาด (elongation at break) และแรงดึงที่จุดขาด (load at break) แทน นอกจากนี้พอลิเมอร์ในกลุ่มนี้จำเป็นต้องมีการคืนตัวกลับได้ดีด้วย (recovery property) จึงต้องมีการเพิ่มแรงยึดเหนี่ยวระหว่างโซ่โมเลกุลด้วยการเชื่อมขวาง (crosslink) ซึ่งจุดที่เชื่อมขวางนี้ควรจะอยู่ห่างกันในระยะที่เหมาะสม เนื่องจากหากถี่เกินไป ยางที่ได้จะมีลักษณะแข็งไม่ยืดหยุ่น ในขณะที่ถ้าห่างเกินไป ก็จะได้ยางที่มีลักษณะนิ่มเกินไป
  4. สารละลายและลาเทกซ์ ใช้งานในรูปของพอลิเมอร์ที่กระจายตัวในของเหลวอื่น ๆ ไม่ว่าจะเป็นตัวทำละลายของพอลิเมอร์เอง หรือกระจายตัวเป็นอิมัลชันในน้ำ ลักษณะการใช้งานคือเป็น กาว สีทาบ้าน เชลแล็ค หรือ สารเคลือบผิวอื่น ๆ พอลิเมอร์ในกลุ่มนี้ควรจะกระจายตัวได้ดี และมีความสามารถในการเชื่อมขวางได้ในสภาวะที่มีแสง หรือแก๊สออกซิเจนได้ หรือไม่ก็สามารถที่จะนำตัวเองไปเกี่ยวพัน (entanglement) กับวัสดุอื่น ๆ ได้

ชนิดของพอลิเมอร์ (แบ่งตามโครงสร้างโมเลกุล)

เมื่อพิจารณาการเชื่อมโยงระหว่างสายโซ่โมเลกุล (crosslinking) เราสามารถแบ่งชนิดของพอลิเมอร์ได้เป็น 3 ชนิด ดังนี้

  1. Thermoplastic polymers เป็นพอลิเมอร์สายตรงหรือกิ่ง ไม่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุล ส่งผลให้สายโซ่โมเลกุลขยับตัวง่ายเมื่อได้รับแรงหรือความร้อน สามารถหลอมและไหลได้เมื่อได้รับความร้อน เป็นส่วนประกอบหลักในพลาสติกอ่อน เช่น Polyethylene ในถุงพลาสติก
  2. Elastomers เป็นพอลิเมอร์ที่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุลเล็กน้อย ซึ่งทำหน้าที่ดึงสายโซ่โมเลกุลกลับมาให้อยู่ในสภาพเดิม เมื่อปล่อยแรงกระทำ
  3. Thermosetting polymers เป็นพอลิเมอร์ที่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุลอย่างหนาแน่น ส่งผลให้สายโซ่โมเลกุลขยับตัวยากเมื่อได้รับแรงหรือความร้อน วัสดุที่มีพอลิเมอร์ชนิดนี้เป็นองค์ประกอบหลัก จึงรับแรงได้ดี และไม่หลอมเหลวเมื่อได้รับความร้อน อย่างไรก็ตาม เมื่อความร้อนสูงถึงอุณหภูมิสลายตัว (Degradation temperature) วัสดุจะสลายตัวไปเนื่องจากพันธะเคมีแตกหัก พอลิเมอร์ชนิดนี้ เป็นส่วนประกอบหลักในพลาสติกแข็ง เช่น ถ้วยชามเมลามีน หลังคาไฟเบอร์ (Thermosets เสริมใยแก้ว)

โครงสร้างของพอลิเมอร์

    คุณสมบัติทางโครงสร้างของพอลิเมอร์เกี่ยวข้องกับการจัดตัวทางกายภาพของลำดับโมโนเมอร์ตลอดแกนหลักของสาย โครงสร้างมีอิทธิพลต่อคุณสมบัติอื่นๆ ของพอลิเมอร์ ตัวอย่างเช่น พอลิเมอร์สายตรงอาจจะละลายหรือไม่ละลายในน้ำขึ้นกับว่าหน่วยย่อยนั้นมีขั้วหรือไม่ แต่ในกรณีของยางธรรมชาติ ยางธรรมชาติสองชนิดอาจจะแสดงความทนทานต่างกันแม้จะมีหน่วยย่อยเหมือนกัน นักวิทยาศาสตร์พอลิเมอร์พยายามพัฒนาวิธีการเพื่ออธิบายทั้งธรรมชาติของหน่วยย่อยและการจัดเรียงตัว

คุณสมบัติของพอลิเมอร์

ชนิดของคุณสมบัติของพอลิเมอร์แบ่งอย่างกว้างๆได้เป็นหลายหมวดขึ้นกับความละเอียด ในระดับนาโนหรือไมโครเป็นคุณสมบัติที่อธิบายลักษณะของสายโดยตรงโดยเฉพาะโครงสร้างของพอลิเมอร์ ในระดับกลาง เป็นคุณสมบัติที่อธิบายสัณฐานของพอลิเมอร์เมื่ออยู่ในที่ว่าง ในระดับกว้างเป็นการอธิบายพฤติกรรมโดยรวมของพอลิเมอร์ ซึ่งเป็นคุณสมบัติในระดับการใช้งาน

  • คุณสมบัติในการขนส่ง เป็นคุณสมบัติของอัตราการแพร่หรือโมเลกุลเคลื่อนไปได้เร็วเท่าใดในสารละลายของพอลิเมอร์ มีความสำคัญมากในการนำพอลิเมอร์ไปใช้เป็นเยื่อหุ้ม
  • จุดหลอมเหลว คำว่าจุดหลอมเหลวที่ใช้กับพอลิเมอร์ไม่ใช่การเปลี่ยนสถานะจากของแข็งเป็นของเหลวแต่เป็นการเปลี่ยนจากรูปผลึกหรือกึ่งผลึกมาเป็นรูปของแข็ง บางครั้งเรียกว่าจุดหลอมเหลวผลึก ในกลุ่มของพอลิเมอร์สังเคราะห์ จุดหลอมเหลวผลึกยังเป็นที่ถกเถียงในกรณีของเทอร์โมพลาสติกเช่นเทอร์โมเซตพอลิเมอร์ที่สลายตัวในอุณหภูมิสูงมากกว่าจะหลอมเหลว
  • พฤติกรรมการผสม โดยทั่วไปส่วนผสมของพอลิเมอร์มีการผสมกันได้น้อยกว่าการผสมของโมเลกุลเล็กๆ ผลกระทบนี้เป็นผลจากข้อเท็จจริงที่ว่าแรงขับเคลื่อนสำหรับการผสมมักเป็นแบบระบบปิด ไม่ใช่แบบใช้พลังงาน หรืออีกอย่างหนึ่ง วัสดุที่ผสมกันได้ที่เกิดเป็นสารละลายไม่ใช่เพราะปฏิสัมพันธ์ระหว่างโมเลกุลที่ชอบทำปฏิกิริยากันแต่เป็นเพราะการเพิ่มค่าเอนโทรปีและพลังงานอิสระที่เกี่ยวข้องกับการเพิ่มปริมาตรที่ใช้งานได้ของแต่ละส่วนประกอบ การเพิ่มขึ้นในระดับเอนโทรปีขึ้นกับจำนวนของอนุภาคที่นำมาผสมกัน เพราะโมเลกุลของพอลิเมอร์มีขนาดใหญ่กว่าและมีความจำเพาะกับปริมาตรเฉพาะมากกว่าโมเลกุลขนาดเล็ก จำนวนของโมเลกุลที่เกี่ยวข้องในส่วนผสมของพอลิเมอร์มีค่าน้อยกว่าจำนวนในส่วนผสมของโมเลกุลขนาดเล็กที่มีปริมาตรเท่ากัน ค่าพลังงานในการผสมเปรียบเทียบได้ต่อหน่วยปริมาตรสำหรับส่วนผสมของพอลิเมอร์และโมเลกุลขนาดเล็ก มีแนวโน้มเพิ่มขึ้นของพลังงานอิสระในการผสมสารละลายพอลิเมอร์และทำให้การละลายของพอลิเมอร์เกิดได้น้อย สารละลายพอลิเมอร์ที่เข้มข้นพบน้อยกว่าที่พบในสารละลายของโมเลกุลขนาดเล็ก ในสารละลายที่เจือจาง คุณสมบัติของพอลิเมอร์จำแนกโดยปฏิกิริยาระหว่างตัวทำละลายและพอลิเมอร์ ในตัวทำละลายที่ดี พอลิเมอร์จะพองและมีปริมาตรมากขึ้น แรงระหว่างโมเลกุลของตัวทำละลายกับหน่วยย่อยจะสูงกว่าแรงภายในโมเลกุล ในตัวทำละลายที่ไม่ดี แรงภายในโมเลกุลสูงกว่าและสายจะหดตัว ในตัวทำละลายแบบธีตา หรือสถานะที่สารละลายพอลิเมอร์ซึ่งมีค่าของสัมประสิทธิ์วิเรียลที่สองเป็นศูนย์ แรงผลักระหว่างโมเลกุลของพอลิเมอร์กับตัวทำละลายเท่ากับแรงภายในโมเลกุลระหว่างหน่วยย่อย ในสภาวะนี้ พอลิเมอร์อยู่ในรูปเกลียวอุดมคติ
  • การแตกกิ่ง การแตกกิ่งของสายพอลิเมอร์มีผลกระทบต่อคุณสมบัติทั้งหมดของพอลิเมอร์ สายยาวที่แตกกิ่งจะเพิ่มความเหนียว เนื่องจากการเพิ่มจำนวนของความซับซ้อนต่อสาย ความยาวอย่างสุ่มและสายสั้นจะลดแรงภายในพอลิเมอร์เพราะการรบกวนการจัดตัว โซ่ข้างสั้นๆลดความเป็นผลึกเพราะรบกวนโครงสร้างผลึก การลดความเป็นผลึกเกี่ยวข้องกับการเพิ่มลักษณะโปร่งใสแบบกระจกเพราะแสงผ่านบริเวณที่เป็นผลึกขนาดเล็ก ตัวอย่างที่ดีของผลกระทบนี้เกี่ยวข้องกับขอบเขตของลักษณะทางกายภาพของพอลิเอทิลีน พอลิเอทิลีนความหนาแน่นสูงมีระดับการแตกกิ่งต่ำ มีความแข็งและใช้เป็นเหยือกนม พอลิเอทิลีนความหนาแน่นต่ำ มีการแตกกิ่งขนาดสั้นๆจำนวนมาก มีความยืดหยุ่นกว่าและใช้ในการทำฟิล์มพลาสติก ดัชนีการแตกกิ่งของพอลิเมอร์เป็นคุณสมบัติที่ใช้จำแนกผลกระทบของการแตกกิ่งสายยาวต่อขนาดของโมเลกุลที่แตกกิ่งในสารละลาย เดนไดรเมอร์เป็นกรณีพิเศษของพอลิเมอร์ที่หน่วยย่อยทุกตัวแตกกิ่ง ซึ่งมีแนวโน้มลดแรงระหว่างโมเลกุลและการเกิดผลึก พอลิเมอร์แบบเดนดริติกไม่ได้แตกกิ่งอย่างสมบูรณ์แต่มีคุณสมบัติใกล้เคียงกับเดนไดรเมอร์เพราะมีการแตกกิ่งมากเหมือนกัน
  • การเติมพลาติซิเซอร์ การเติมพลาสติซิเซอร์มีแนวโน้มเพิ่มความยืดหยุ่นของพอลิเมอร์ พลาสติซิเซอร์โดยทั่วไปเป็นโมเลกุลขนาดเล็กที่มีคุณสมบัติทางเคมีคล้ายกับพอลิเมอร์และเข้าเติมในช่องว่างของพอลิเมอร์ที่เคลื่อนไหวได้ดีและลดปฏิกิริยาระหว่างสาย ตัวอย่างที่ดีของพลาสติซิเซอร์เกี่ยวข้องกับพอลิไวนิลคลอไรด์หรือพีวีซี พีวีซีที่ไม่ได้เติมพลาสติซิเซอร์ใช้ทำท่อ ส่วนพีวีซีที่เติมพลาสติซิเซอร์ใช้ทำผ้าเพราะมีความยืดหยุ่นมากกว่า